From 17be224d25e0cf84d9021f794378d7642aa19739 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Lo=C3=AFc=20GUEZO?= Date: Sun, 18 Jan 2026 18:23:14 +0100 Subject: [PATCH] refactor(network.py): annotacte activation functions --- network.py | 9 ++++----- nnetwork.ipynb | 6 +++--- 2 files changed, 7 insertions(+), 8 deletions(-) diff --git a/network.py b/network.py index 42159a9..70a7d9a 100644 --- a/network.py +++ b/network.py @@ -1,13 +1,12 @@ import math import random -# transform all numbers between 0 and 1 -def sigmoid(x): +def sigmoid(x: float) -> float: return 1 / (1 + math.exp(-x)) -# sigmoid's derivation -def sigmoid_deriv(x): - y = sigmoid(x) + +def sigmoid_deriv(x: float) -> float: + y: float = sigmoid(x) return y * (1 - y) # neuron class diff --git a/nnetwork.ipynb b/nnetwork.ipynb index 59bb766..0912c57 100644 --- a/nnetwork.ipynb +++ b/nnetwork.ipynb @@ -224,7 +224,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "f6de25ea", "metadata": {}, "outputs": [], @@ -284,7 +284,7 @@ " # update bias: bias -= learning_rate * dC/dy * dy/dz * dz/db\n", " self.bias -= learning_rate * dcost_dy * dy_dz * dz_db\n", "\n", - " # return gradient vector len(input) dimension\n", + " # return gradient vector len(weight) dimension\n", " return [dcost_dy * dy_dz * w for w in self.weight]" ] }, @@ -353,7 +353,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.13.4" + "version": "3.13.5" } }, "nbformat": 4,