feat: add network and move to network.py

This commit is contained in:
2025-06-01 09:56:04 +02:00
parent f8ab6cf4ea
commit 5da7c7a22b
2 changed files with 133 additions and 101 deletions

102
main.py
View File

@@ -1,101 +1 @@
import math import network
import random
# transform all numbers between 0 and 1
def sigmoid(x):
return 1 / (1 + math.exp(-x))
# sigmoid's derivation
def sigmoid_deriv(x):
y = sigmoid(x)
return y * (1 - y)
# neuron class
class Neuron:
"""
z : linear combination of inputs and weights plus bias (pre-activation)
y : output of the activation function (sigmoid(z))
w : list of weights, one for each input
"""
def __init__(self, isize):
# number of inputs to this neuron
self.isize = isize
# importance to each input
self.weight = [random.uniform(-1, 1) for _ in range(self.isize)]
# importance of the neuron
self.bias = random.uniform(-1, 1)
# last z (linear combination) value
self.z = 0
# last output sigmoid(z)
self.last_output = 0
def forward(self, x):
"""
x : list of input values to the neuron
"""
# computes the weighted sum of inputs and add the bias
self.z = sum(w * xi for w, xi in zip(self.weight, x)) + self.bias
# normalize the output between 0 and 1
self.last_output = sigmoid(self.z)
return self.last_output
# adjust weight and bias of neuron
def backward(self, x, dcost_dy, learning_rate):
"""
x : list of input values to the neuron
dcost_dy : derivate of the cost function `(2 * (output - target))`
learning_rate : learning factor (adjust the speed of weight/bias change during training)
weight -= learning_rate * dC/dy * dy/dz * dz/dw
bias -= learning_rate * dC/dy * dy/dz * dz/db
"""
# dy/dz: derivate of the sigmoid activation
dy_dz = sigmoid_deriv(self.z)
# dz/dw = x
dz_dw = x
# dz/db = 1
dz_db = 1
for i in range(self.isize):
# update each weight `weight -= learning_rate * dC/dy * dy/dz * x_i`
self.weight[i] -= learning_rate * dcost_dy * dy_dz * dz_dw[i]
# update bias: bias -= learning_rate * dC/dy * dy/dz * dz/db
self.bias -= learning_rate * dcost_dy * dy_dz * dz_db
# return gradient vector len(input) dimension
return [dcost_dy * dy_dz * w for w in self.weight]
class Layer:
def __init__(self, input_size, output_size):
"""
input_size : size of each neuron input
output_size : size of neurons
"""
self.size = output_size
# list of neurons
self.neurons = [Neuron(input_size) for _ in range(output_size)]
def forward(self, inputs):
self.inputs = inputs
# compute and return the outputs of all neurons in the layer
return [neuron.forward(inputs) for neuron in self.neurons]
# adjust weight and bias of the layer (all neurons)
def backward(self, dcost_dy_list, learning_rate=0.1):
# init layer gradient vector len(input) dimention
input_gradients = [0.0] * len(self.inputs)
for i, neuron in enumerate(self.neurons):
dcost_dy = dcost_dy_list[i]
grad_to_input = neuron.backward(self.inputs, dcost_dy, learning_rate)
# compute all neuron's gradient inside layer gradient
# accumulate the input gradients from all neurons
for j in range(len(grad_to_input)):
input_gradients[j] += grad_to_input[j]
# return layer gradient
return input_gradients

132
network.py Normal file
View File

@@ -0,0 +1,132 @@
import math
import random
# transform all numbers between 0 and 1
def sigmoid(x):
return 1 / (1 + math.exp(-x))
# sigmoid's derivation
def sigmoid_deriv(x):
y = sigmoid(x)
return y * (1 - y)
# neuron class
class Neuron:
"""
z : linear combination of inputs and weights plus bias (pre-activation)
y : output of the activation function (sigmoid(z))
w : list of weights, one for each input
"""
def __init__(self, isize):
# number of inputs to this neuron
self.isize = isize
# importance to each input
self.weight = [random.uniform(-1, 1) for _ in range(self.isize)]
# importance of the neuron
self.bias = random.uniform(-1, 1)
# last z (linear combination) value
self.z = 0
# last output sigmoid(z)
self.last_output = 0
def forward(self, x):
"""
x : list of input values to the neuron
"""
# computes the weighted sum of inputs and add the bias
self.z = sum(w * xi for w, xi in zip(self.weight, x)) + self.bias
# normalize the output between 0 and 1
self.last_output = sigmoid(self.z)
return self.last_output
# adjust weight and bias of neuron
def backward(self, x, dcost_dy, learning_rate):
"""
x : list of input values to the neuron
dcost_dy : derivate of the cost function `(2 * (output - target))`
learning_rate : learning factor (adjust the speed of weight/bias change during training)
weight -= learning_rate * dC/dy * dy/dz * dz/dw
bias -= learning_rate * dC/dy * dy/dz * dz/db
"""
# dy/dz: derivate of the sigmoid activation
dy_dz = sigmoid_deriv(self.z)
# dz/dw = x
dz_dw = x
# dz/db = 1
dz_db = 1
for i in range(self.isize):
# update each weight `weight -= learning_rate * dC/dy * dy/dz * x_i`
self.weight[i] -= learning_rate * dcost_dy * dy_dz * dz_dw[i]
# update bias: bias -= learning_rate * dC/dy * dy/dz * dz/db
self.bias -= learning_rate * dcost_dy * dy_dz * dz_db
# return gradient vector len(input) dimension
return [dcost_dy * dy_dz * w for w in self.weight]
class Layer:
def __init__(self, input_size, output_size):
"""
input_size : size of each neuron input
output_size : size of neurons
"""
self.size = output_size
# list of neurons
self.neurons = [Neuron(input_size) for _ in range(output_size)]
def forward(self, inputs):
self.inputs = inputs
# give the same inputs to each neuron in the layer
return [neuron.forward(inputs) for neuron in self.neurons]
# adjust weight and bias of the layer (all neurons)
def backward(self, dcost_dy_list, learning_rate=0.1):
# init layer gradient vector len(input) dimention
input_gradients = [0.0] * len(self.inputs)
for i, neuron in enumerate(self.neurons):
dcost_dy = dcost_dy_list[i]
grad_to_input = neuron.backward(self.inputs, dcost_dy, learning_rate)
# accumulate the input gradients from all neurons
for j in range(len(grad_to_input)):
input_gradients[j] += grad_to_input[j]
# return layer gradient
return input_gradients
class NeuralNetwork:
def __init__(self, layer_size):
self.layers = [Layer(layer_size[i], layer_size[i+1]) for i in range(len(layer_size) - 1)]
def forward(self, inputs):
output = inputs
for layer in self.layers:
output = layer.forward(output)
return output
def backward(self, inputs, targets, learning_rate=0.1):
"""
target must be a list with the same length that the final layer
input
"""
output = self.forward(inputs)
# computes the initial gradient of the cost function for each neuron
# by using Mean Squared Error: dC/dy = 2 * (output - target)
dcost_dy_list = [2 * (o - t) for o, t in zip(output, targets)]
grad = dcost_dy_list
for layer in reversed(self.layers):
# backpropagate the gradient of the layer to update weights and biases
grad = layer.backward(grad, learning_rate)
# return final gradient
return grad
if __name__ == "__main__":
print("you might want to run main.py instead of network.py")