mirror of
https://github.com/guezoloic/neural-network.git
synced 2026-01-25 07:34:23 +00:00
feat(main.py): add comments for neuron class
This commit is contained in:
30
main.py
30
main.py
@@ -12,6 +12,11 @@ def sigmoid_deriv(x):
|
||||
|
||||
# neuron class
|
||||
class Neuron:
|
||||
"""
|
||||
z: linear combination of inputs and weights plus bias (pre-activation)
|
||||
y : output of the activation function (sigmoid(z))
|
||||
w : list of weights, one for each input
|
||||
"""
|
||||
def __init__(self, isize):
|
||||
# number of inputs to this neuron
|
||||
self.isize = isize
|
||||
@@ -21,24 +26,39 @@ class Neuron:
|
||||
self.bias = random.uniform(-1, 1)
|
||||
|
||||
# last z (linear combination) value
|
||||
self.last_z = 0
|
||||
self.z = 0
|
||||
# last output sigmoid(z)
|
||||
self.last_output = 0
|
||||
|
||||
def forward(self, x):
|
||||
z = sum(w * xi for w, xi in zip(self.weight, x)) + self.bias
|
||||
self.last_z = z
|
||||
self.last_output = sigmoid(z)
|
||||
# computes the weighted sum of inputs and add the bias
|
||||
self.z = sum(w * xi for w, xi in zip(self.weight, x)) + self.bias
|
||||
# normalize the output between 0 and 1
|
||||
self.last_output = sigmoid(self.z)
|
||||
return self.last_output
|
||||
|
||||
# adjust weight and bias
|
||||
def backward(self, x, dcost_dy, learning_rate):
|
||||
dy_dz = sigmoid_deriv(self.last_z)
|
||||
"""
|
||||
x : list of input values to the neuron
|
||||
dcost_dy : derivate of the cost function `(2 * (output - target))`
|
||||
learning_rate : learning factor (adjust the speed of weight/bias change during training)
|
||||
|
||||
weight -= learning_rate * dC/dy * dy/dz * dz/dw
|
||||
bias -= learning_rate * dC/dy * dy/dz * dz/db
|
||||
"""
|
||||
# dy/dz: derivate of the sigmoid activation
|
||||
dy_dz = sigmoid_deriv(self.z)
|
||||
# dz/dw = x
|
||||
dz_dw = x
|
||||
# dz/db = 1
|
||||
dz_db = 1
|
||||
|
||||
for i in range(self.isize):
|
||||
# update all weights by `learning_rate * cost * derivate sigmoid * dz/dw`
|
||||
self.weight[i] -= learning_rate * dcost_dy * dy_dz * dz_dw[i]
|
||||
|
||||
# update bias by`learning_rate * cost * derivate sigmoid * dz/db`
|
||||
self.bias -= learning_rate * dcost_dy * dy_dz * dz_db
|
||||
|
||||
# def forward(self, inputs: list[float]) -> float:
|
||||
|
||||
Reference in New Issue
Block a user