feat: add first text page (might change soon)

This commit is contained in:
2025-05-06 22:23:16 +02:00
parent b6fe3f7510
commit cb9630b78a

View File

@@ -5,24 +5,116 @@
"id": "9b3f1635", "id": "9b3f1635",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Neural Network\n", "# Neural Network"
]
},
{
"cell_type": "markdown",
"id": "478651c8",
"metadata": {},
"source": [
"## What is a *Neuron* (artifical)\n",
"\n", "\n",
"## What is a neuron in a neural network?" "First of all, **I'm not an Neurologist so i might say some nonsense, i only researched online**. \n",
"\n",
"An artifical *neuron* works similary to a biological *neuron* in the way it process information. In a brain, like yours, a *neuron* receives signals from other *neurons*, processes them and sends an *output*.\n",
"\n",
"An artifical *neuron* takes **multiple *inputs*** (such as numbers), applies updated values called **weights** to each *inputs*, adds a constant called **bias**, apply a specific function to normalize the value called **Activation function**, and then `returns` the *output* of the Activation function (such as: **sigmoid**, **ReLU**, etc...)."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": null,
"id": "126bc01c", "id": "7d9d6072",
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"\n",
"# Neuron 1\n",
"class Neuron:\n",
" def __init__(self, input_size: int) -> None:\n",
" self.input_size = input_size\n",
" self.weight = [random.uniform(0, 1) for _ in range(self.input_size)]\n",
" self.bias = random.uniform(0, 1)"
]
},
{
"cell_type": "markdown",
"id": "1aff9ee6",
"metadata": {},
"source": [
"# 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7ca39a42",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"import math\n", "import math\n",
"import random\n", "import random\n",
"\n", "\n",
"# Neuron 2\n",
"class Neuron:\n",
" def __init__(self, input_size: int) -> None:\n",
" self.input_size = input_size\n",
" self.weight = [random.uniform(0, 1) for _ in range(self.input_size)]\n",
" self.bias = random.uniform(0, 1)\n",
"\n",
" def sigmoid(x: float) -> float:\n", " def sigmoid(x: float) -> float:\n",
" return 1/(1 + math.exp(-x))\n", " return 1/(1 + math.exp(-x))\n",
" \n", " \n",
" def forward(self, inputs: list) -> float:\n",
" assert len(inputs) == self.input_size, \"error: misnumber inputs number\"\n",
" total = sum(self.weight[i] * inputs[i] for i in range(self.isize)) + self.bias\n",
" return self.sigmoid(total)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6709c5c7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Neuron output : 0.9001175686881125\n"
]
}
],
"source": [
"# 8 for 8 bits (1 Byte)\n",
"nbits: int = 8\n",
"neuron = Neuron(nbits)\n",
"inputs: list = [1, 0, 1, 0, 0, 1, 1, 0] \n",
"\n",
"output = neuron.forward(inputs)\n",
"print(\"Neuron output :\", output)"
]
},
{
"cell_type": "markdown",
"id": "aa57ae8e",
"metadata": {},
"source": [
"# 3"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f6de25ea",
"metadata": {},
"outputs": [],
"source": [
"import math\n",
"import random\n",
"\n",
"class Neuron:\n", "class Neuron:\n",
" def __init__(self, isize: int) -> None:\n", " def __init__(self, isize: int) -> None:\n",
" self.isize = isize\n", " self.isize = isize\n",
@@ -32,7 +124,24 @@
" def forward(self, inputs: list) -> float:\n", " def forward(self, inputs: list) -> float:\n",
" assert len(inputs) == self.isize, \"error: incorrect inputs number\"\n", " assert len(inputs) == self.isize, \"error: incorrect inputs number\"\n",
" total = sum(self.weight[i] * inputs[i] for i in range(self.isize)) + self.bias\n", " total = sum(self.weight[i] * inputs[i] for i in range(self.isize)) + self.bias\n",
" return sigmoid(total)" " return self.sigmoid(total)\n",
" \n",
" def sigmoid(x: float) -> float:\n",
" return 1/(1 + math.exp(-x))\n",
"\n",
" # target needs to be between 0 and 1\n",
" def train(self, inputs: list, target: float, learning_rate: float = 0.1):\n",
" z = sum(self.weight[i] * inputs[i] for i in range(self.isize)) + self.bias\n",
" output = self.sigmoid(z)\n",
"\n",
" error = output - target\n",
" d_sigmoid = output * (1 - output)\n",
" dz = error * d_sigmoid\n",
"\n",
" for i in range(self.isize):\n",
" self.weight[i] -= learning_rate * dz * inputs[i]\n",
"\n",
" self.bias -= learning_rate * dz\n"
] ]
} }
], ],