import math import random class Neuron: def __init__(self, isize: int) -> None: self.isize = isize self.weight = [random.uniform(0, 1) for _ in range(self.isize)] self.bias = random.uniform(0, 1) def forward(self, inputs: list) -> float: assert len(inputs) == self.isize, "error: incorrect inputs number" total = sum(self.weight[i] * inputs[i] for i in range(self.isize)) + self.bias return self.sigmoid(total) def sigmoid(self, x: float) -> float: return 1/(1 + math.exp(-x)) # target needs to be between 0 and 1 def train(self, inputs: list, target: float, learning_rate: float = 0.1): z = sum(self.weight[i] * inputs[i] for i in range(self.isize)) + self.bias output = self.sigmoid(z) error = output - target d_sigmoid = output * (1 - output) dz = error * d_sigmoid for i in range(self.isize): self.weight[i] -= learning_rate * dz * inputs[i] self.bias -= learning_rate * dz