Files
neural-network/network.py

209 lines
7.5 KiB
Python

import math
import random
from typing import Optional, Callable
def sigmoid(x: float) -> float:
return 1 / (1 + math.exp(-x))
def sigmoid_deriv(x: float) -> float:
y: float = sigmoid(x)
return y * (1 - y)
class Neuron:
def __init__(self, input_size: int) -> None:
"""
Set up the neuron's parameters (weights, and bias)
:param input_size: Number of incomming inputs (must be > 0)
"""
# Store input dimensions for structural consistency
self._input_size: int = input_size
# Scale each input influence using random weights.
self._weight: list[float] = [
random.uniform(-1., 1.) for _ in range(input_size)
]
# Initialize a shift to the activation threshold with a random bias
self._bias: float = random.uniform(-1., 1.)
def forward(self, x: list[int], fn: Optional[Callable[[float], float]] = None) -> float:
"""
Execute the neuron's forward pass.
:param x: Description
:param activate: Description
"""
if len(x) != self._input_size:
raise ValueError(
f"Input vertex dimension {len(x)} mismatches the "
f"stored size {self._input_size}")
self._z: float = sum(welement * xelement for welement,
xelement in zip(self._weight, x)) + self._bias
return fn(self._z) if fn is not None else self._z
def backward(self, dz_dw: list[float], dcost_dy: float, learning_rate: float,
fn_deriv: Optional[Callable[[float], float]] = None) -> list[float]:
# Check dimension consistency
if len(dz_dw) != self._input_size:
raise ValueError(
f"Input vertex dimension {len(dz_dw)} mismatches "
f"stored size {self._input_size}")
# Local gradient: dy/dz (defaults to 1.0 for linear identity)
dy_dz: float = fn_deriv(self._z) if fn_deriv is not None else 1.
# Compute common error term (delta)
# dC/dz = dC/dy * dy/dz
delta: float = dcost_dy * dy_dz
# Update weights: weight -= learning_rate * dC/dz * dz/dw
for i in range(self._input_size):
self._weight[i] -= learning_rate * delta * dz_dw[i]
# Update bias: bias -= learning_rate * dC/dz * dz/db (where dz/db = 1)
self._bias -= learning_rate * delta * 1.0
# Return input gradient (dC/dx): dC/dz * dz/dx (where dz/dx = weights)
# This vector allows the error to flow back to previous layers.
return [delta * w for w in self._weight]
def __repr__(self) -> str:
jmp: int = int(math.sqrt(self._input_size))
text: list[str] = []
for i in range(0, self._input_size, jmp):
line: str = str.join("", str(self._weight[i: (i + jmp)]))
text.append(line)
return f"weight:\n{str.join("\n", text)}\nbias: {self._bias}"
# # neuron class
# class Neuron:
# """
# z : linear combination of inputs and weights plus bias (pre-activation)
# y : output of the activation function (sigmoid(z))
# w : list of weights, one for each input
# """
# def __init__(self, input_size):
# # number of inputs to this neuron
# self._input_size = input_size
# # importance to each input
# self._weight = [random.uniform(-1, 1) for _ in range(self._input_size)]
# # importance of the neuron
# self._bias = random.uniform(-1, 1)
# def forward(self, x, activate=True):
# """
# x : list of input values to the neuron
# """
# # computes the weighted sum of inputs and add the bias
# self._z = sum(w * xi for w, xi in zip(self.weight, x)) + self.bias
# # normalize the output between 0 and 1 if activate
# last_output = sigmoid(self.z) if activate else self.z
# return last_output
# # adjust weight and bias of neuron
# def backward(self, x, dcost_dy, learning_rate):
# """
# x : list of input values to the neuron
# dcost_dy : derivate of the cost function `(2 * (output - target))`
# learning_rate : learning factor (adjust the speed of weight/bias change during training)
# weight -= learning_rate * dC/dy * dy/dz * dz/dw
# bias -= learning_rate * dC/dy * dy/dz * dz/db
# """
# # dy/dz: derivate of the sigmoid activation
# dy_dz = sigmoid_deriv(self.z)
# # dz/dw = x
# dz_dw = x
# assert len(dz_dw) >= self.isize, "too many value for input size"
# # dz/db = 1
# dz_db = 1
# for i in range(self.isize):
# # update each weight `weight -= learning_rate * dC/dy * dy/dz * x_i`
# self.weight[i] -= learning_rate * dcost_dy * dy_dz * dz_dw[i]
# # update bias: bias -= learning_rate * dC/dy * dy/dz * dz/db
# self.bias -= learning_rate * dcost_dy * dy_dz * dz_db
# # return gradient vector len(weight) dimension
# return [dcost_dy * dy_dz * w for w in self.weight]
# def __repr__(self):
# pass
# class Layer:
# def __init__(self, input_size, output_size):
# """
# input_size : size of each neuron input
# output_size : size of neurons
# """
# self.size = output_size
# # list of neurons
# self.neurons = [Neuron(input_size) for _ in range(output_size)]
# def forward(self, inputs, activate=True):
# self.inputs = inputs
# # give the same inputs to each neuron in the layer
# return [neuron.forward(inputs, activate) for neuron in self.neurons]
# # adjust weight and bias of the layer (all neurons)
# def backward(self, dcost_dy_list, learning_rate=0.1):
# # init layer gradient vector len(input) dimention
# input_gradients = [0.0] * len(self.inputs)
# for i, neuron in enumerate(self.neurons):
# dcost_dy = dcost_dy_list[i]
# grad_to_input = neuron.backward(self.inputs, dcost_dy, learning_rate)
# # accumulate the input gradients from all neurons
# for j in range(len(grad_to_input)):
# input_gradients[j] += grad_to_input[j]
# # return layer gradient
# return input_gradients
# class NeuralNetwork:
# def __init__(self, layer_size):
# self.layers = [Layer(layer_size[i], layer_size[i+1]) for i in range(len(layer_size) - 1)]
# def forward(self, inputs):
# output = inputs
# for i, layer in enumerate(self.layers):
# activate = (i != len(self.layers) - 1) # deactivate sigmoid latest neuron
# output = layer.forward(output, activate=activate)
# return output
# def backward(self, inputs, targets, learning_rate=0.1):
# """
# target must be a list with the same length that the final layer
# input
# """
# output = self.forward(inputs)
# # computes the initial gradient of the cost function for each neuron
# # by using Mean Squared Error's derivate: dC/dy = 2 * (output - target)
# dcost_dy_list = [2 * (o - t) for o, t in zip(output, targets)]
# grad = dcost_dy_list
# for layer in reversed(self.layers):
# # backpropagate the gradient of the layer to update weights and biases
# grad = layer.backward(grad, learning_rate)
# # return final gradient
# return grad
# if __name__ == "__main__":
# print("you might want to run main.py instead of network.py")