fix: remove all heap allocation for better performance in vector functions.

This commit is contained in:
2025-03-21 08:03:18 +01:00
committed by Loïc GUEZO
parent 5fb6a47ce5
commit b613081224
6 changed files with 101 additions and 172 deletions

View File

@@ -13,7 +13,7 @@ typedef struct {
* @return A pointer to the newly allocated 3D vector if * @return A pointer to the newly allocated 3D vector if
* successful, or NULL if the allocation fails. * successful, or NULL if the allocation fails.
*/ */
Vec3* vec3(float x, float y, float z); Vec3 vec3(float x, float y, float z);
/** /**
* @brief Adds two 3D vectors in a new 3D vector. * @brief Adds two 3D vectors in a new 3D vector.
@@ -23,7 +23,7 @@ Vec3* vec3(float x, float y, float z);
* representing the sum of v1 and v2. * representing the sum of v1 and v2.
* Returns NULL if the allocation fails. * Returns NULL if the allocation fails.
*/ */
Vec3* vec3Add(Vec3* v1, Vec3* v2); Vec3 vec3Add(Vec3 v1, Vec3 v2);
/** /**
* @brief Subtracts two 3D vectors in a new 3D * @brief Subtracts two 3D vectors in a new 3D
@@ -34,7 +34,7 @@ Vec3* vec3Add(Vec3* v1, Vec3* v2);
* representing the subtraction of v1 and v2. * representing the subtraction of v1 and v2.
* Returns NULL if the allocation fails. * Returns NULL if the allocation fails.
*/ */
Vec3* vec3Sub(Vec3* v1, Vec3* v2); Vec3 vec3Sub(Vec3 v1, Vec3 v2);
/** /**
* @brief Scales a 3D vector by a constant scalar in a * @brief Scales a 3D vector by a constant scalar in a
@@ -46,7 +46,7 @@ Vec3* vec3Sub(Vec3* v1, Vec3* v2);
* scalar. Returns NULL if the allocation * scalar. Returns NULL if the allocation
* fails. * fails.
*/ */
Vec3* vec3Scale(Vec3* v, float scalar); Vec3 vec3Scale(Vec3 v, float scalar);
/** /**
* @brief Computes the dot product of two 3D vectors * @brief Computes the dot product of two 3D vectors
@@ -62,7 +62,7 @@ Vec3* vec3Scale(Vec3* v, float scalar);
* Returns NAN if one of the input vectors are * Returns NAN if one of the input vectors are
* NULL. * NULL.
*/ */
float vec3Dot(Vec3* a, Vec3* b); float vec3Dot(Vec3 a, Vec3 b);
/** /**
* @brief Computes the Length (magnitude) of a 3D * @brief Computes the Length (magnitude) of a 3D
@@ -72,7 +72,7 @@ float vec3Dot(Vec3* a, Vec3* b);
* a scalar value. Returns NAN if input vector * a scalar value. Returns NAN if input vector
* is NULL. * is NULL.
*/ */
float vec3Len(Vec3* v); float vec3Len(Vec3 v);
/** /**
* @brief Normalizes the 3D vector. * @brief Normalizes the 3D vector.
@@ -82,7 +82,7 @@ float vec3Len(Vec3* v);
* if the input vector is a zero vector. Returns * if the input vector is a zero vector. Returns
* NULL if the input pointer is invalid. * NULL if the input pointer is invalid.
*/ */
Vec3* vec3Norm(Vec3* v); Vec3 vec3Norm(Vec3 v);
/** /**
* @brief Performs linear interpolation between two 3D * @brief Performs linear interpolation between two 3D
@@ -99,7 +99,7 @@ Vec3* vec3Norm(Vec3* v);
* a and b. Returns NULL if any of the input vectors * a and b. Returns NULL if any of the input vectors
* is NULL. * is NULL.
*/ */
Vec3* vec3Lerp(Vec3* a, Vec3* b, float t); Vec3 vec3Lerp(Vec3 a, Vec3 b, float t);
/** /**
* @brief Computes the cross product of two 3D vectors. * @brief Computes the cross product of two 3D vectors.
@@ -113,7 +113,7 @@ Vec3* vec3Lerp(Vec3* a, Vec3* b, float t);
* the cross product of vectors a and b. * the cross product of vectors a and b.
* Returns NULL if the allocation fails. * Returns NULL if the allocation fails.
*/ */
Vec3* vec3Cross(Vec3* a, Vec3* b); Vec3 vec3Cross(Vec3 a, Vec3 b);
/** /**
* @brief Computes the angle between two 3D vectors. * @brief Computes the angle between two 3D vectors.
@@ -121,7 +121,7 @@ Vec3* vec3Cross(Vec3* a, Vec3* b);
* @param b Pointer to the second vector. * @param b Pointer to the second vector.
* @return The angle between a and b in radians. * @return The angle between a and b in radians.
*/ */
float vec3Angle(Vec3* a, Vec3* b); float vec3Angle(Vec3 a, Vec3 b);
/** /**
* @brief Computes the projection of vector a onto vector b. * @brief Computes the projection of vector a onto vector b.
@@ -131,7 +131,7 @@ float vec3Angle(Vec3* a, Vec3* b);
* the projection of a onto b. * the projection of a onto b.
* Returns NULL if b is a zero vector. * Returns NULL if b is a zero vector.
*/ */
Vec3* vec3Proj(Vec3* a, Vec3* b); Vec3 vec3Proj(Vec3 a, Vec3 b);
/** /**
* @brief Computes the reflection of a vector v against a normal. * @brief Computes the reflection of a vector v against a normal.
@@ -141,7 +141,7 @@ Vec3* vec3Proj(Vec3* a, Vec3* b);
* the reflection of v across normal. * the reflection of v across normal.
* Returns NULL if normal is a zero vector. * Returns NULL if normal is a zero vector.
*/ */
Vec3* vec3Refl(Vec3* v, Vec3* normal); Vec3 vec3Refl(Vec3 v, Vec3 normal);
/** /**
* @brief Computes the Euclidean distance between two 3D vectors. * @brief Computes the Euclidean distance between two 3D vectors.
@@ -150,7 +150,7 @@ Vec3* vec3Refl(Vec3* v, Vec3* normal);
* @return The scalar distance between a and b. * @return The scalar distance between a and b.
* Returns NAN if either vector is NULL. * Returns NAN if either vector is NULL.
*/ */
float vec3Dist(Vec3* a, Vec3* b); float vec3Dist(Vec3 a, Vec3 b);
/** /**
* @brief Rotates a 3D vector around a given axis by a specified angle. * @brief Rotates a 3D vector around a given axis by a specified angle.
@@ -161,8 +161,8 @@ float vec3Dist(Vec3* a, Vec3* b);
* the rotated vector. * the rotated vector.
* Returns NULL if axis is a zero vector. * Returns NULL if axis is a zero vector.
*/ */
Vec3* vec3Rotate(Vec3* v, Vec3* axis, float angle); Vec3 vec3Rotate(Vec3 v, Vec3 axis, float angle);
void vec3Free(Vec3* v); void vec3Free(Vec3 v);
#endif // VEC3_H #endif // VEC3_H

View File

@@ -14,7 +14,7 @@ typedef struct {
* @return A pointer to the newly allocated 4D vector if * @return A pointer to the newly allocated 4D vector if
* successful, or NULL if the allocation fails. * successful, or NULL if the allocation fails.
*/ */
Vec4* vec4(float x, float y, float z, float w); Vec4 vec4(float x, float y, float z, float w);
/** /**
* @brief Adds two 4D vectors in a new 4D vector. * @brief Adds two 4D vectors in a new 4D vector.
@@ -24,7 +24,7 @@ Vec4* vec4(float x, float y, float z, float w);
* representing the sum of v1 and v2. * representing the sum of v1 and v2.
* Returns NULL if the allocation fails. * Returns NULL if the allocation fails.
*/ */
Vec4* vec4Add(Vec4* v1, Vec4* v2); Vec4 vec4Add(Vec4 v1, Vec4 v2);
/** /**
* @brief Subtracts two 4D vectors in a new 4D * @brief Subtracts two 4D vectors in a new 4D
@@ -35,7 +35,7 @@ Vec4* vec4Add(Vec4* v1, Vec4* v2);
* representing the subtraction of v1 and v2. * representing the subtraction of v1 and v2.
* Returns NULL if the allocation fails. * Returns NULL if the allocation fails.
*/ */
Vec4* vec4Sub(Vec4* v1, Vec4* v2); Vec4 vec4Sub(Vec4 v1, Vec4 v2);
/** /**
* @brief Scales a 4D vector by a constant scalar in a * @brief Scales a 4D vector by a constant scalar in a
@@ -47,7 +47,7 @@ Vec4* vec4Sub(Vec4* v1, Vec4* v2);
* scalar. Returns NULL if the allocation * scalar. Returns NULL if the allocation
* fails. * fails.
*/ */
Vec4* vec4Scale(Vec4* v, float scalar); Vec4 vec4Scale(Vec4 v, float scalar);
/** /**
* @brief Computes the dot product of two 4D vectors * @brief Computes the dot product of two 4D vectors
@@ -63,7 +63,7 @@ Vec4* vec4Scale(Vec4* v, float scalar);
* Returns NAN if one of the input vectors are * Returns NAN if one of the input vectors are
* NULL. * NULL.
*/ */
float vec4Dot(Vec4* a, Vec4* b); float vec4Dot(Vec4 a, Vec4 b);
/** /**
* @brief Computes the Length (magnitude) of a 4D * @brief Computes the Length (magnitude) of a 4D
@@ -73,7 +73,7 @@ float vec4Dot(Vec4* a, Vec4* b);
* a scalar value. Returns NAN if input vector * a scalar value. Returns NAN if input vector
* is NULL. * is NULL.
*/ */
float vec4Len(Vec4* v); float vec4Len(Vec4 v);
/** /**
* @brief Normalizes the 4D vector. * @brief Normalizes the 4D vector.
@@ -83,7 +83,7 @@ float vec4Len(Vec4* v);
* if the input vector is a zero vector. Returns * if the input vector is a zero vector. Returns
* NULL if the input pointer is invalid. * NULL if the input pointer is invalid.
*/ */
Vec4* vec4Norm(Vec4* v); Vec4 vec4Norm(Vec4 v);
/** /**
* @brief Performs linear interpolation between two 4D * @brief Performs linear interpolation between two 4D
@@ -100,7 +100,7 @@ Vec4* vec4Norm(Vec4* v);
* a and b. Returns NULL if any of the input vectors * a and b. Returns NULL if any of the input vectors
* is NULL. * is NULL.
*/ */
Vec4* vec4Lerp(Vec4* a, Vec4* b, float t); Vec4 vec4Lerp(Vec4 a, Vec4 b, float t);
/** /**
* @brief Computes the angle between two 4D vectors. * @brief Computes the angle between two 4D vectors.
@@ -108,7 +108,7 @@ Vec4* vec4Lerp(Vec4* a, Vec4* b, float t);
* @param b Pointer to the second vector. * @param b Pointer to the second vector.
* @return The angle between a and b in radians. * @return The angle between a and b in radians.
*/ */
float vec4Angle(Vec4* a, Vec4* b); float vec4Angle(Vec4 a, Vec4 b);
/** /**
* @brief Computes the projection of vector a onto vector b. * @brief Computes the projection of vector a onto vector b.
@@ -118,7 +118,7 @@ float vec4Angle(Vec4* a, Vec4* b);
* the projection of a onto b. * the projection of a onto b.
* Returns NULL if b is a zero vector. * Returns NULL if b is a zero vector.
*/ */
Vec4* vec4Proj(Vec4* a, Vec4* b); Vec4 vec4Proj(Vec4 a, Vec4 b);
/** /**
* @brief Computes the reflection of a vector v against a normal. * @brief Computes the reflection of a vector v against a normal.
@@ -128,7 +128,7 @@ Vec4* vec4Proj(Vec4* a, Vec4* b);
* the reflection of v across normal. * the reflection of v across normal.
* Returns NULL if normal is a zero vector. * Returns NULL if normal is a zero vector.
*/ */
Vec4* vec4Refl(Vec4* v, Vec4* normal); Vec4 vec4Refl(Vec4 v, Vec4 normal);
/** /**
* @brief Computes the Euclidean distance between two 4D vectors. * @brief Computes the Euclidean distance between two 4D vectors.
@@ -137,9 +137,7 @@ Vec4* vec4Refl(Vec4* v, Vec4* normal);
* @return The scalar distance between a and b. * @return The scalar distance between a and b.
* Returns NAN if either vector is NULL. * Returns NAN if either vector is NULL.
*/ */
float vec4Dist(Vec4* a, Vec4* b); float vec4Dist(Vec4 a, Vec4 b);
void vec4Free(Vec4* v);
#endif // VECTOR4_H #endif // VECTOR4_H

View File

@@ -1,3 +1,5 @@
#include <stdlib.h>
int main() { int main() {
return 0; return EXIT_FAILURE;
} }

View File

@@ -1,11 +1,11 @@
#include "math/vector.h" #include "math/vector.h"
Vec3* Vec4ToVec3(Vec4* v) Vec3 Vec4ToVec3(Vec4 v)
{ {
return vec3(v->x, v->y, v->z); return vec3(v.x, v.y, v.z);
} }
Vec4* Vec3ToVec4(Vec3* v) Vec4 Vec3ToVec4(Vec3 v)
{ {
return vec4(v->x, v->y, v->z, 0); return vec4(v.x, v.y, v.z, 0);
} }

View File

@@ -2,82 +2,67 @@
#include <stdlib.h> #include <stdlib.h>
#include <float.h> #include <float.h>
#include <math/vector3.h> #include "math/vector3.h"
Vec3* vec3(float x, float y, float z) Vec3 vec3(float x, float y, float z)
{ {
Vec3* vec = (Vec3*)malloc(sizeof(Vec3)); return (Vec3) {x, y, z};
if (!vec) return NULL;
vec->x = x;
vec->y = y;
vec->z = z;
return vec;
} }
Vec3* vec3Add(Vec3* v1, Vec3* v2) Vec3 vec3Add(Vec3 v1, Vec3 v2)
{ {
if (!v1 || !v2) return NULL; return vec3(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z);
return vec3(v1->x + v2->x, v1->y + v2->y, v1->z + v2->z);
} }
Vec3* vec3Sub(Vec3* v1, Vec3* v2) Vec3 vec3Sub(Vec3 v1, Vec3 v2)
{ {
if (!v1 || !v2) return NULL; return vec3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);
return vec3(v1->x - v2->x, v1->y - v2->y, v1->z - v2->z);
} }
Vec3* vec3Scale(Vec3* v, float scalar) Vec3 vec3Scale(Vec3 v, float scalar)
{ {
if (!v) return NULL; return vec3(v.x * scalar, v.y * scalar, v.z * scalar);
return vec3(v->x * scalar, v->y * scalar, v->z * scalar);
} }
float vec3Dot(Vec3* a, Vec3* b) float vec3Dot(Vec3 a, Vec3 b)
{ {
if (!a || !b) return NAN; return a.x * b.x + a.y * b.y + a.z * b.z;
return a->x * b->x + a->y * b->y + a->z * b->z;
} }
float vec3Len(Vec3* v) float vec3Len(Vec3 v)
{ {
if (!v) return NAN; return sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
return sqrtf(v->x * v->x + v->y * v->y + v->z * v->z);
} }
Vec3* vec3Norm(Vec3* v) Vec3 vec3Norm(Vec3 v)
{ {
if (!v) return NULL;
float length = vec3Len(v); float length = vec3Len(v);
if (length == 0.f) return NULL; if (length == 0.f) return vec3(0, 0, 0);
return vec3Scale(v, 1.f / length); return vec3Scale(v, 1.f / length);
} }
Vec3* vec3Lerp(Vec3* a, Vec3* b, float t) Vec3 vec3Lerp(Vec3 a, Vec3 b, float t)
{ {
if (!a || !b) return NULL;
t = fmaxf(0.f, fminf(t, 1.f)); t = fmaxf(0.f, fminf(t, 1.f));
return vec3( return vec3(
a->x + t * (b->x - a->x), a.x + t * (b.x - a.x),
a->y + t * (b->y - a->y), a.y + t * (b.y - a.y),
a->z + t * (b->z - a->z) a.z + t * (b.z - a.z)
); );
} }
Vec3* vec3Cross(Vec3* a, Vec3* b) Vec3 vec3Cross(Vec3 a, Vec3 b)
{ {
if (!a || !b) return NULL;
return vec3( return vec3(
a->y * b->z - a->z * b->y, a.y * b.z - a.z * b.y,
a->z * b->x - a->x * b->z, a.z * b.x - a.x * b.z,
a->x * b->y - a->y * b->x a.x * b.y - a.y * b.x
); );
} }
float vec3Angle(Vec3* a, Vec3* b) float vec3Angle(Vec3 a, Vec3 b)
{ {
float lenA = vec3Len(a); float lenA = vec3Len(a);
float lenB = vec3Len(b); float lenB = vec3Len(b);
@@ -95,70 +80,46 @@ float vec3Angle(Vec3* a, Vec3* b)
return acosf(cosTheta); return acosf(cosTheta);
} }
Vec3* vec3Proj(Vec3* a, Vec3* b) Vec3 vec3Proj(Vec3 a, Vec3 b)
{ {
if (!a || !b) return NULL;
float dotA = vec3Dot(a, b); float dotA = vec3Dot(a, b);
float dotB = vec3Dot(b, b); float dotB = vec3Dot(b, b);
if (dotB < FLT_EPSILON) return NULL;
float scale = dotA / dotB; float scale = dotA / dotB;
return vec3Scale(b, scale); return vec3Scale(b, scale);
} }
Vec3* vec3Refl(Vec3* v, Vec3* normal) Vec3 vec3Refl(Vec3 v, Vec3 normal)
{ {
if (!v || !normal) return NULL; Vec3 proj = vec3Proj(v, normal);
Vec3 scal = vec3Scale(proj, 2.f);
Vec3* proj = vec3Proj(v, normal); Vec3 rlt = vec3Sub(v, scal);
Vec3* scal = vec3Scale(proj, 2.f);
Vec3* rlt = vec3Sub(v, scal);
vec3Free(proj);
vec3Free(scal);
return rlt; return rlt;
} }
float vec3Dist(Vec3* a, Vec3* b) float vec3Dist(Vec3 a, Vec3 b)
{ {
if (!a || !b) return NAN; Vec3 vsub = vec3Sub(a, b);
Vec3* vsub = vec3Sub(a, b);
float rlt = vec3Len(vsub); float rlt = vec3Len(vsub);
vec3Free(vsub);
return rlt; return rlt;
} }
Vec3* vec3Rotate(Vec3* v, Vec3* axis, float angle) Vec3 vec3Rotate(Vec3 v, Vec3 axis, float angle)
{ {
if (!v || !axis) return NULL; Vec3 normAxis = vec3Norm(axis);
Vec3* normAxis = vec3Norm(axis);
float dot = vec3Dot(normAxis, v); float dot = vec3Dot(normAxis, v);
Vec3* cross = vec3Cross(normAxis, v); Vec3 cross = vec3Cross(normAxis, v);
Vec3* vscal = vec3Scale(v, cosf(angle)); Vec3 vscal = vec3Scale(v, cosf(angle));
Vec3* cscal = vec3Scale(cross, sinf(angle)); Vec3 cscal = vec3Scale(cross, sinf(angle));
Vec3* add = vec3Add(vscal, cscal); Vec3 add = vec3Add(vscal, cscal);
vec3Free(cross); Vec3 dscal = vec3Scale(normAxis, dot * (1 - cosf(angle)));
Vec3* dscal = vec3Scale(normAxis, dot * (1 - cosf(angle))); Vec3 rlt = vec3Add(add, dscal);
vec3Free(normAxis);
vec3Free(vscal);
vec3Free(cscal);
Vec3* rlt = vec3Add(add, dscal);
vec3Free(add);
vec3Free(dscal);
return rlt; return rlt;
} }
void vec3Free(Vec3* v)
{
free(v);
}

View File

@@ -4,73 +4,57 @@
#include "math/vector4.h" #include "math/vector4.h"
Vec4* vec4(float x, float y, float z, float w) Vec4 vec4(float x, float y, float z, float w)
{ {
Vec4* vec = (Vec4*)malloc(sizeof(Vec4)); return (Vec4) {x, y, z, w};
if (!vec) return NULL;
vec->x = x;
vec->y = y;
vec->z = z;
vec->w = w;
return vec;
} }
Vec4* vec4Add(Vec4* v1, Vec4* v2) Vec4 vec4Add(Vec4 v1, Vec4 v2)
{ {
if (!v1 || !v2) return NULL; return vec4(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z, v1.w + v2.w);
return vec4(v1->x + v2->x, v1->y + v2->y, v1->z + v2->z, v1->w + v2->w);
} }
Vec4* vec4Sub(Vec4* v1, Vec4* v2) Vec4 vec4Sub(Vec4 v1, Vec4 v2)
{ {
if (!v1 || !v2) return NULL; return vec4(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z, v1.w - v2.w);
return vec4(v1->x - v2->x, v1->y - v2->y, v1->z - v2->z, v1->w - v2->w);
} }
Vec4* vec4Scale(Vec4* v, float scalar) Vec4 vec4Scale(Vec4 v, float scalar)
{ {
if (!v) return NULL; return vec4(v.x * scalar, v.y * scalar, v.z * scalar, v.w * scalar);
return vec4(v->x * scalar, v->y * scalar, v->z * scalar, v->w * scalar);
} }
float vec4Dot(Vec4* a, Vec4* b) float vec4Dot(Vec4 a, Vec4 b)
{ {
if (!a || !b) return 0; return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
return a->x * b->x + a->y * b->y + a->z * b->z + a->w * b->w;
} }
float vec4Len(Vec4* v) float vec4Len(Vec4 v)
{ {
if (!v) return NAN; return sqrtf(v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w);
return sqrtf(v->x * v->x + v->y * v->y + v->z * v->z + v->w * v->w);
} }
Vec4* vec4Norm(Vec4* v) Vec4 vec4Norm(Vec4 v)
{ {
if (!v) return NULL;
float length = vec4Len(v); float length = vec4Len(v);
if (length == 0.f) return NULL; if (length == 0.f) return vec4(0, 0, 0, 0);
return vec4Scale(v, 1.f / length); return vec4Scale(v, 1.f / length);
} }
Vec4* vec4Lerp(Vec4* a, Vec4* b, float t) Vec4 vec4Lerp(Vec4 a, Vec4 b, float t)
{ {
if (!a || !b) return NULL;
t = fmaxf(0.f, fminf(t, 1.f)); t = fmaxf(0.f, fminf(t, 1.f));
return vec4( return vec4(
a->x + t * (b->x - a->x), a.x + t * (b.x - a.x),
a->y + t * (b->y - a->y), a.y + t * (b.y - a.y),
a->z + t * (b->z - a->z), a.z + t * (b.z - a.z),
a->w + t * (b->w - a->w) a.w + t * (b.w - a.w)
); );
} }
float vec4Angle(Vec4* a, Vec4* b) float vec4Angle(Vec4 a, Vec4 b)
{ {
float lenA = vec4Len(a); float lenA = vec4Len(a);
float lenB = vec4Len(b); float lenB = vec4Len(b);
@@ -88,42 +72,26 @@ float vec4Angle(Vec4* a, Vec4* b)
return acosf(cosTheta); return acosf(cosTheta);
} }
Vec4* vec4Proj(Vec4* a, Vec4* b) Vec4 vec4Proj(Vec4 a, Vec4 b)
{ {
if (!a || !b) return NULL;
float dotA = vec4Dot(a, b); float dotA = vec4Dot(a, b);
float dotB = vec4Dot(b, b); float dotB = vec4Dot(b, b);
if (dotB < FLT_EPSILON) return NULL;
float scale = dotA / dotB; float scale = dotA / dotB;
return vec4Scale(b, scale); return vec4Scale(b, scale);
} }
Vec4* vec4Refl(Vec4* v, Vec4* normal) Vec4 vec4Refl(Vec4 v, Vec4 normal)
{ {
if (!v || !normal) return NULL; Vec4 proj = vec4Proj(v, normal);
Vec4 scal = vec4Scale(proj, 2.f);
Vec4* proj = vec4Proj(v, normal); Vec4 rlt = vec4Sub(v, scal);
Vec4* scal = vec4Scale(proj, 2.f);
Vec4* rlt = vec4Sub(v, scal);
vec4Free(proj);
vec4Free(scal);
return rlt; return rlt;
} }
float vec4Dist(Vec4* a, Vec4* b) float vec4Dist(Vec4 a, Vec4 b)
{ {
if (!a || !b) return NAN; Vec4 vsub = vec4Sub(a, b);
Vec4* vsub = vec4Sub(a, b);
float rlt = vec4Len(vsub); float rlt = vec4Len(vsub);
vec4Free(vsub);
return rlt; return rlt;
} }
void vec4Free(Vec4* v)
{
if (v) free(v);
}