Files
neural-network/main.py

31 lines
1.0 KiB
Python

import math
import random
class Neuron:
def __init__(self, isize: int) -> None:
self.isize = isize
self.weight = [random.uniform(0, 1) for _ in range(self.isize)]
self.bias = random.uniform(0, 1)
def forward(self, inputs: list) -> float:
assert len(inputs) == self.isize, "error: incorrect inputs number"
total = sum(self.weight[i] * inputs[i] for i in range(self.isize)) + self.bias
return self.sigmoid(total)
def sigmoid(self, x: float) -> float:
return 1/(1 + math.exp(-x))
# target needs to be between 0 and 1
def train(self, inputs: list, target: float, learning_rate: float = 0.1):
z = sum(self.weight[i] * inputs[i] for i in range(self.isize)) + self.bias
output = self.sigmoid(z)
error = output - target
d_sigmoid = output * (1 - output)
dz = error * d_sigmoid
for i in range(self.isize):
self.weight[i] -= learning_rate * dz * inputs[i]
self.bias -= learning_rate * dz