mirror of
https://github.com/guezoloic/neural-network.git
synced 2026-01-25 09:34:23 +00:00
49 lines
1.6 KiB
Python
49 lines
1.6 KiB
Python
import math
|
|
import random
|
|
|
|
def sigmoid(x: float) -> float:
|
|
return 1/(1 + math.exp(-x))
|
|
|
|
|
|
class Neuron:
|
|
def __init__(self, isize: int) -> None:
|
|
self.isize = isize
|
|
self.weight = [random.uniform(-1, 1) for _ in range(self.isize)]
|
|
self.bias = random.uniform(-1, 1)
|
|
|
|
def forward(self, inputs: list[float]) -> float:
|
|
assert len(inputs) == self.isize, "error: incorrect inputs number"
|
|
total = sum(self.weight[i] * inputs[i] for i in range(self.isize)) + self.bias
|
|
return sigmoid(total)
|
|
|
|
def train(self, inputs: list[float], target: float, learning_rate: float = 0.1):
|
|
assert len(inputs) == self.isize, "error: incorrect inputs number"
|
|
|
|
z = sum(self.weight[i] * inputs[i] for i in range(self.isize)) + self.bias
|
|
output = sigmoid(z)
|
|
|
|
error = output - target
|
|
d_sigmoid = output * (1 - output)
|
|
dz = error * d_sigmoid
|
|
|
|
for i in range(self.isize):
|
|
self.weight[i] -= learning_rate * dz * inputs[i]
|
|
|
|
self.bias -= learning_rate * dz
|
|
|
|
class Layer:
|
|
def __init__(self, input_size, output_size):
|
|
self.size = output_size
|
|
self.neurons = [Neuron(output_size) for _ in range(input_size)]
|
|
|
|
def forward(self, inputs):
|
|
return [n.forward(inputs) for n in self.neurons]
|
|
|
|
def train(self, inputs: list[float], targets: list[float], learning_rate: float = 0.1):
|
|
outputs = self.forward(inputs)
|
|
|
|
errors = [outputs[i] - targets[i] for i in range(self.size)]
|
|
|
|
for i in range(self.neurons):
|
|
self.neurons[i].train(inputs, errors[i], learning_rate)
|