mirror of
https://github.com/guezoloic/t3dsr.git
synced 2026-01-25 06:34:23 +00:00
270 lines
5.6 KiB
C
270 lines
5.6 KiB
C
#include "vec4.h"
|
|
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
#ifdef SIMD_X86
|
|
#include <xmmintrin.h>
|
|
#elif defined(SIMD_ARCH)
|
|
#include <arm_neon.h>
|
|
#endif
|
|
|
|
|
|
Vec4f_t vec4f(float x, float y, float z, float w)
|
|
{
|
|
return (Vec4f_t){.x = x, .y = y, .z = z, .w = w};
|
|
}
|
|
|
|
Vec4f_t vec4f_from_array(const float *__restrict val)
|
|
{
|
|
Vec4f_t vec;
|
|
#if defined (SIMD_X86)
|
|
__m128 arr = _mm_load_ps(val);
|
|
_mm_store_ps(vec.data, arr);
|
|
#elif defined (SIMD_ARCH)
|
|
float32x4_t arr = vld1q_f32(val);
|
|
vst1q_f32(vec.data, arr);
|
|
#else
|
|
for(int i = 0; i<VEC_SIZE; i++) {
|
|
vec.data[i] = val[i];
|
|
}
|
|
#endif
|
|
return vec;
|
|
}
|
|
|
|
Vec4f_t vec4f_scalar(float f)
|
|
{
|
|
Vec4f_t vec4;
|
|
|
|
// store f x 4 in register
|
|
// add all register into data
|
|
#if defined(SIMD_X86)
|
|
__m128 scalar = _mm_set1_ps(f);
|
|
_mm_store_ps(vec4.data, scalar);
|
|
|
|
#elif defined(SIMD_ARCH)
|
|
float32x4_t scalar = vdupq_n_f32(f);
|
|
vst1q_f32(vec4.data, scalar);
|
|
|
|
// add one by one each value to their specific address
|
|
#else
|
|
for (int i = 0; i < VEC_SIZE; i++) {
|
|
vec4.data[i] = f;
|
|
}
|
|
#endif
|
|
return vec4;
|
|
}
|
|
|
|
Vec4f_t vec4f_zero(void)
|
|
{
|
|
return vec4f_scalar(0.f);
|
|
}
|
|
|
|
Vec4f_t* vec4f_add_r(Vec4f_t *__restrict out, Vec4f_t a)
|
|
{
|
|
#if defined (SIMD_X86)
|
|
__m128 va = _mm_load_ps(a.data);
|
|
__m128 vb = _mm_load_ps(out->data);
|
|
__m128 vres = _mm_add_ps(va, vb);
|
|
_mm_store_ps(out->data, vres);
|
|
|
|
#elif defined (SIMD_ARCH)
|
|
float32x4_t va = vld1q_f32(a.data);
|
|
float32x4_t vb = vld1q_f32(out->data);
|
|
float32x4_t vres = vaddq_f32(va, vb);
|
|
vst1q_f32(out->data, vres);
|
|
#else
|
|
for(int i = 0; i<VEC_SIZE; i++) {
|
|
out->data[i] += a.data[i];
|
|
}
|
|
#endif
|
|
return out;
|
|
}
|
|
|
|
Vec4f_t vec4f_add(Vec4f_t a, Vec4f_t b)
|
|
{
|
|
vec4f_add_r(&a, b);
|
|
return a;
|
|
}
|
|
|
|
Vec4f_t* vec4f_sub_r(Vec4f_t *__restrict out, Vec4f_t a)
|
|
{
|
|
#if defined (SIMD_X86)
|
|
__m128 va = _mm_load_ps(out->data);
|
|
__m128 vb = _mm_load_ps(a.data);
|
|
__m128 vres = _mm_sub_ps(va, vb);
|
|
_mm_store_ps(out->data, vres);
|
|
|
|
#elif defined (SIMD_ARCH)
|
|
float32x4_t va = vld1q_f32(out->data);
|
|
float32x4_t vb = vld1q_f32(a.data);
|
|
float32x4_t vres = vsubq_f32(va, vb);
|
|
vst1q_f32(out->data, vres);
|
|
|
|
#else
|
|
for(int i = 0; i<VEC_SIZE; i++) {
|
|
out->data[i] -= a.data[i];
|
|
}
|
|
#endif
|
|
return out;
|
|
}
|
|
|
|
Vec4f_t vec4f_sub(Vec4f_t a, Vec4f_t b)
|
|
{
|
|
vec4f_sub_r(&a, b);
|
|
return a;
|
|
}
|
|
|
|
Vec4f_t* vec4f_scale_r(Vec4f_t *__restrict out, float scalar)
|
|
{
|
|
#if defined (SIMD_X86)
|
|
__m128 va = _mm_load_ps(out->data);
|
|
__m128 vb = _mm_set1_ps(scalar);
|
|
__m128 vres = _mm_mul_ps(va, vb);
|
|
_mm_store_ps(out->data, vres);
|
|
|
|
#elif defined (SIMD_ARCH)
|
|
float32x4_t va = vld1q_f32(out->data);
|
|
float32x4_t vb = vdupq_n_f32(scalar);
|
|
float32x4_t vres = vmulq_f32(va, vb);
|
|
vst1q_f32(out->data, vres);
|
|
#else
|
|
for(int i = 0; i<4; i++) {
|
|
out->data[i] *= scalar;
|
|
}
|
|
#endif
|
|
return out;
|
|
}
|
|
|
|
Vec4f_t vec4f_scale(Vec4f_t a, float scalar)
|
|
{
|
|
vec4f_scale_r(&a, scalar);
|
|
return a;
|
|
}
|
|
|
|
float vec4f_dot(Vec4f_t a, Vec4f_t b)
|
|
{
|
|
#if defined (SIMD_X86)
|
|
__m128 va = _mm_load_ps(a.data);
|
|
__m128 vb = _mm_load_ps(b.data);
|
|
__m128 vmul = _mm_mul_ps(va, vb);
|
|
|
|
__m128 shuf = _mm_shuffle_ps(vmul, vmul, _MM_SHUFFLE(2, 3, 0, 1)); // [y, y, w, w]
|
|
__m128 sum = _mm_add_ps(vmul, shuf); // [x+y, y+y, z+w, w+w]
|
|
|
|
shuf = _mm_movehl_ps(shuf, sum); // [z+w, w+w, w, w]
|
|
sum = _mm_add_ss(sum, shuf); // [x+y+z+w, y+y, z+w, w+w]
|
|
|
|
return _mm_cvtss_f32(sum);
|
|
|
|
#elif defined (SIMD_ARCH)
|
|
float32x4_t va = vld1q_f32(a.data);
|
|
float32x4_t vb = vld1q_f32(b.data);
|
|
|
|
float32x4_t vmul = vmulq_f32(va, vb);
|
|
float32x2_t sum_pair = vadd_f32(vget_low_f32(vmul), vget_high_f32(vmul));
|
|
float32x2_t final_sum = vpadd_f32(sum_pair, sum_pair);
|
|
|
|
return vget_lane_f32(final_sum, 0);
|
|
#else
|
|
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
|
|
#endif
|
|
}
|
|
|
|
float vec4f_len(Vec4f_t v)
|
|
{
|
|
return sqrtf(vec4f_dot(v, v));
|
|
}
|
|
|
|
|
|
Vec4f_t* vec4f_norm_r(Vec4f_t *__restrict v)
|
|
{
|
|
float length = vec4f_len(*v);
|
|
if (length < FLT_EPSILON) *v = vec4f_zero();
|
|
vec4f_scale_r(v, 1.f / length);
|
|
return v;
|
|
}
|
|
|
|
Vec4f_t vec4f_norm(Vec4f_t v)
|
|
{
|
|
vec4f_norm_r(&v);
|
|
return v;
|
|
}
|
|
|
|
Vec4f_t* vec4f_lerp_r(Vec4f_t *__restrict a, Vec4f_t b, float t)
|
|
{
|
|
t = fmaxf(0.f, fminf(t, 1.f));
|
|
|
|
a->x += t * (b.x - a->x);
|
|
a->y += t * (b.y - a->y);
|
|
a->z += t * (b.z - a->z);
|
|
a->w += t * (b.w - a->w);
|
|
|
|
return a;
|
|
}
|
|
|
|
Vec4f_t vec4f_lerp(Vec4f_t a, Vec4f_t b, float t)
|
|
{
|
|
vec4f_lerp_r(&a, b, t);
|
|
return a;
|
|
}
|
|
|
|
float vec4f_angle(Vec4f_t a, Vec4f_t b)
|
|
{
|
|
float lenA = vec4f_len(a);
|
|
float lenB = vec4f_len(b);
|
|
|
|
if (isnan(lenA) || isnan(lenB)
|
|
|| lenA < FLT_EPSILON
|
|
|| lenB < FLT_EPSILON)
|
|
return NAN;
|
|
|
|
float dot = vec4f_dot(a, b);
|
|
float cosTheta = dot / (lenA * lenB);
|
|
|
|
cosTheta = fmaxf(-1.f, fminf(cosTheta, 1.f));
|
|
|
|
return acosf(cosTheta);
|
|
}
|
|
|
|
|
|
Vec4f_t vec4f_proj(Vec4f_t a, Vec4f_t b)
|
|
{
|
|
float dotA = vec4f_dot(a, b);
|
|
float dotB = vec4f_dot(b, b);
|
|
|
|
float scale = dotA / dotB;
|
|
return vec4f_scale(b, scale);
|
|
}
|
|
|
|
Vec4f_t vec4f_refl(Vec4f_t v, Vec4f_t normal)
|
|
{
|
|
Vec4f_t proj = vec4f_proj(v, normal);
|
|
Vec4f_t scal = vec4f_scale(proj, 2.f);
|
|
Vec4f_t rlt = vec4f_sub(v, scal);
|
|
return rlt;
|
|
}
|
|
|
|
float vec4f_dist(Vec4f_t a, Vec4f_t b)
|
|
{
|
|
Vec4f_t vsub = vec4f_sub(a, b);
|
|
float rlt = vec4f_len(vsub);
|
|
return rlt;
|
|
}
|
|
|
|
Vec4f_t* vec4f_cross_r(Vec4f_t* __restrict out, Vec4f_t a, Vec4f_t b)
|
|
{
|
|
out->x = a.y * b.z - a.z * b.y;
|
|
out->y = a.z * b.x - a.x * b.z;
|
|
out->z = a.x * b.y - a.y * b.x;
|
|
out->w = 0.f;
|
|
return out;
|
|
}
|
|
|
|
Vec4f_t vec4f_cross(Vec4f_t a, Vec4f_t b)
|
|
{
|
|
Vec4f_t out;
|
|
vec4f_cross_r(&out, a, b);
|
|
return out;
|
|
}
|